Mohamad-Ali Salloum is a Pharmacist and science writer. He loves simplifying science to the general public and healthcare students through words and illustrations. When he's not working, you can usually find him in the gym, reading a book, or learning a new skill.
Understanding Sickle Cell Disease, Pathophysiology, and Its Treatments
Mohamad-Ali Salloum, PharmD • July 12, 2024
Share
Pathophysiology and Molecular Biology
- Hydroxyurea: This medication increases the production of fetal hemoglobin (HbF), a type of hemoglobin that does not sickle. By increasing HbF levels, hydroxyurea reduces the frequency of pain crises and the need for blood transfusions. For example, a patient taking hydroxyurea may experience fewer episodes of severe pain compared to someone not on the medication.
- Blood Transfusions: Regular blood transfusions can help reduce the risk of stroke and other complications by increasing the number of normal red blood cells in circulation. For instance, a child with a high risk of stroke may receive monthly blood transfusions to lower this risk.
- Pain Management: Pain crises are a common and debilitating symptom of SCD. Pain management strategies include over-the-counter pain relievers like ibuprofen, prescription opioids, and non-pharmacological methods such as heating pads and hydration. For example, a patient experiencing a pain crisis might use a combination of ibuprofen and a heating pad to alleviate pain.
- Bone Marrow Transplant: This is currently the only potential cure for SCD. It involves replacing the patient’s bone marrow with healthy marrow from a compatible donor. However, this procedure carries significant risks and is not suitable for all patients. For instance, a young patient with a severe form of SCD might undergo a bone marrow transplant if a suitable donor is found.
- Gene Therapy: This approach aims to correct the genetic mutation responsible for SCD. One method involves using a virus to deliver a normal copy of the HBB gene to the patient’s bone marrow cells. For example, a patient undergoing gene therapy might have their bone marrow cells modified to produce normal hemoglobin, potentially curing the disease.
- CRISPR-Cas9: This gene-editing technology can precisely target and modify specific genes. Researchers are exploring its use to correct the sickle cell mutation or to increase the production of fetal hemoglobin. For instance, a patient treated with CRISPR-Cas9 might have their genes edited to produce more HbF, reducing the severity of their symptoms.
- Voxelotor: This medication works by increasing the affinity of hemoglobin for oxygen, preventing the polymerization of HbS and the sickling of red blood cells. For example, a patient taking voxelotor might experience fewer vaso-occlusive crises compared to someone not on the medication.
- L-glutamine: This amino acid supplement has been shown to reduce the frequency of pain crises in patients with SCD. For instance, a patient taking L-glutamine might have fewer hospitalizations due to pain crises.
Comparison of Treatment Mechanisms
- Hydroxyurea: This medication increases the production of fetal hemoglobin (HbF), which does not sickle. By increasing HbF levels, hydroxyurea reduces the frequency of pain crises and the need for blood transfusions. For example, a patient taking hydroxyurea may experience fewer episodes of severe pain compared to someone not on the medication.
- Voxelotor: This medication works by increasing the affinity of hemoglobin for oxygen, preventing the polymerization of HbS and the sickling of red blood cells. For example, a patient taking voxelotor might experience fewer vaso-occlusive crises compared to someone not on the medication.
Resources:
- Mayo Clinic. Sickle cell anemia - Symptoms & causes: https://www.mayoclinic.org/diseases-conditions/sickle-cell-anemia/symptoms-causes/syc-20355876.
- Cleveland Clinic. Sickle Cell Disease (SCD): Types, Symptoms & Causes: https://my.clevelandclinic.org/health/diseases/12100-sickle-cell-disease
- Johns Hopkins Medicine. Sickle Cell Disease: https://www.hopkinsmedicine.org/health/conditions-and-diseases/sickle-cell-disease
- CDC. About Sickle Cell Disease: https://www.cdc.gov/sickle-cell/about/index.html
- NHLBI, NIH. Sickle Cell Disease - Causes and Risk Factors: https://www.nhlbi.nih.gov/health/sickle-cell-disease/causes
- Oxford Academic. Sickle-Cell Anemia Hemoglobin: The Molecular Biology of the First: https://academic.oup.com/genetics/article/167/1/1/6050610
- Blood Advances. Metabolomic and molecular insights into sickle cell disease and innovative therapies: https://ashpublications.org/bloodadvances/article/3/8/1347/260127/Metabolomic-and-molecular-insights-into-sickle
- Science News Explores. Explainer: What is sickle cell disease?: https://www.snexplores.org/article/explainer-what-is-sickle-cell-disease
- NHS. Sickle cell disease - Diagnosis: https://www.nhs.uk/conditions/sickle-cell-disease/diagnosis/
- Springer. Pathophysiology and recent therapeutic insights of sickle cell disease: https://link.springer.com/article/10.1007/s00277-020-03977-9
- Drugs.com. How does Endari work to treat sickle cell disease?: https://www.drugs.com/medical-answers/endari-work-treat-sickle-cell-disease-3323440/
List of Services
ABOUT THE AUTHOR
Mohamad-Ali Salloum, PharmD
Share
Recent articles:

References: Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463‑E472. [academic.oup.com] Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light‑emitting eReaders negatively affects sleep, circadian timing, and next‑morning alertness. Proc Natl Acad Sci USA. 2015;112(4):1232‑1237. [hms.harvard.edu] Schöllhorn I, Stefani O, Lucas RJ, et al. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol. 2023;6:1090. [nature.com] He J‑W, Tu Z‑H, Xiao L, Su T, Tang Y‑X. Effect of restricting bedtime mobile phone use on sleep, arousal, mood, and working memory: A randomized pilot trial. PLoS One. 2020;15(2):e0228756. [journals.plos.org] Hartstein LE, Mathew GM, Reichenberger DA, et al. The impact of screen use on sleep health across the lifespan: a National Sleep Foundation consensus statement. Sleep Health. 2024;10(4):373‑384. [sleephealt…ournal.org] Höhn C, Hahn MA, Gruber G, et al. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun. 2024;6(3):fcae173. Finucane E, O’Brien A, Treweek S, et al. Does reading a book in bed make a difference to sleep? The People’s Trial—an online, pragmatic randomized trial. Trials. 2021;22:873. [link.springer.com] Ong JC, Manber R, Segal Z, Xia Y, Shapiro S, Wyatt JK. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep. 2014;37(9):1553‑1563. [academic.oup.com] , [mindfulchair.com] He X, Pan B, Ma N, et al. The association of screen time and the risk of sleep outcomes: a systematic review and meta‑analysis. Front Psychiatry. 2025;16:1640263. Shechter A, Quispe KA, Mizhquiri Barbecho JS, et al. Interventions to reduce short‑wavelength light at night and their effects on sleep: systematic review and meta‑analysis. SLEEP Advances. 2020;1(1):zpaa002. [academic.oup.com]

References: Harkin B, Webb TL, Chang BPI, Prestwich A, Conner M, Kellar I, et al. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence. Psychol Bull . 2016;142(2):198–229. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000025.pdf Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act . 2019;16(1):63. Available from: https://link.springer.com/article/10.1186/s12966-019-0824-3 Patel ML, Brooks TL, Bennett GG. Consistent self‑monitoring in a commercial app‑based intervention for weight loss: results from a randomized trial. J Behav Med . 2020;43:391–401. Available from: https://link.springer.com/article/10.1007/s10865-019-00091-8 Patel ML, Hopkins CM, Brooks TL, Bennett GG. Comparing self-monitoring strategies for weight loss in a smartphone app: randomized controlled trial. JMIR Mhealth Uhealth . 2019;7(2):e12209. Available from: https://mhealth.jmir.org/2019/2/e12209/ Lally P, Van Jaarsveld CHM, Potts HWW, Wardle J. How are habits formed: Modelling habit formation in the real world. Eur J Soc Psychol . 2010;40(6):998–1009. Available from: https://repositorio.ispa.pt/bitstream/10400.12/3364/1/IJSP_998-1009.pdf Singh B, Murphy A, Maher C, Smith AE. Time to form a habit: A systematic review and meta-analysis of health behaviour habit formation and its determinants. Healthcare (Basel) . 2024;12(23):2488. Available from: https://www.mdpi.com/2227-9032/12/23/2488 Gollwitzer PM, Sheeran P. Implementation intentions and goal achievement: A meta‑analysis of effects and processes. In: Advances in Experimental Social Psychology . 2006;38:69–119. Available from: https://www.researchgate.net/publication/37367696 Adriaanse MA, Gollwitzer PM, De Ridder DTD, De Wit JBF, Kroese FM. Breaking habits with implementation intentions: A test of underlying processes. Pers Soc Psychol Bull . 2011;37(4):502–13. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/380229/0146167211399102.pdf Palmer CA, Bower JL, Cho KW, Clementi MA, Lau S, Oosterhoff B, et al. Sleep loss and emotion: A systematic review and meta-analysis of over 50 years of experimental research. Psychol Bull . 2023;149(11):2314–48. Available from: https://www.apa.org/pubs/journals/releases/bul-bul0000410.pdf Kong Y, Yu B, Guan G, Wang Y, He H. Effects of sleep deprivation on sports performance and perceived exertion in athletes and non-athletes: a systematic review and meta-analysis. Front Physiol . 2025;16:1544286. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1544286/full Tadros M, Newby JM, Li S, Werner‑Seidler A. Psychological treatments to improve sleep quality in university students: systematic review and meta-analysis. PLoS One . 2025;20(2):e0317125. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317125 Locke EA, Latham GP. Building a practically useful theory of goal setting and task motivation: A 35‑year odyssey. Am Psychol . 2002;57(9):705–17. Available from: https://med.stanford.edu/content/dam/sm/s-spire/documents/PD.locke-and-latham-retrospective_Paper.pdf

Reference: ACRP. “ICH E6(R2) to ICH E6(R3) Comparison.” (Jan 28, 2025) — terminology & essential records: PDF Clinical Trials Toolkit. “Summary of Key Changes in ICH E6(R3).” (Mar 25, 2025) — proportionality, QbD, safety reporting: Article PharmaEduCenter. “Key changes between ICH GCP E6 R3 and E6 R2.” (Aug 10, 2025) — structure & glossary: Blog CITI Program. “Navigating the Transition from ICH E6(R2) to ICH E6(R3).” (Mar 12, 2025) — consent & site practices: Blog IntuitionLabs. “ICH E6 (R3) Explained.” (Updated Jan 13, 2026) — rationale, data governance: Deep dive













